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Some Problems in Melt Spinning Processes. 11. 
Molecular Orientation in the Course of Melt Spinning 

TOMONOBU MANABE, Nylon Department, Nippon Rayon Company, 
[Jji, Kyoto, Japan 

Synopsis 
The approximate solutions of the three-dimensional, fundamental equation for the 

molecular orientation of a spun fiber are obtained, a rigid ellipsoid model for the molecular 
segments or the paracrystalline structure being assumed. A rate of strain G (sec.-l) of 
a molten fiber and a rotational diffusion constant D (set.?) of the segment are approxi- 
mated as a function of time t (sec.) as follows: 

G = Go + Git + GzP + . . . 
D = Do + Dit + . .  . 

Under the conditions, 1 >> Gat >> Gltz >> G2ta >> . . . and 1 >> Dot >> Dlt2 >> . . . , a coef- 
ficient of the molecular orientationf of spun fiber is found to be: 

4 1 - - - Go3 + - Go'Do - 6GoDo2 - - GoGi + 2GoDi + G1Do 
2(2 5 21 7 7 

The applicability of these approximate, theoretical results is extremely limited in the 
neighborhood of the spinneret under practical melt spinning conditions. However, the 
theory should be useful in the case where the polymer temperature is near its melting 
temperature and the extension rate of spinning fiber is small. 

INTRODUCTION 
In the course of a melt spinning process, polymer molecules are oriented 

with an extension of a melt fiber. The molecular orientation of a spun 
fiber is determined both from the orientation which is due to the extension 
of the fiber and from the orientation relaxation due to  a rotational diffusion 
of the polymer molecules.' 

Several experimental s t ~ d i e s ~ - ~  have been carried out on the molecular 
orientation of the spun fiber, and some empirical laws have been dis- 
covered. 2-4 

Ziabickil presented two fundamental differential equations which gov- 
erned the orientation of the polymer molecules in a molten fiber. One of 
which is concerned with a rigid ellipsoid model, and the other is related to a 
flexible coiled chain model. The solutions of these differential equations 
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were not obtained. Moreover, some corrections should be made to the 
fundamental differential equation for the rigid ellipsoid model, because 
this equation treats the two-dimensional problems disregarding the fact 
that the melt spinning involves a three-dimensional system. 

The objectives of this paper are (1)  to present a new fundamental 
differential equation which governs the orientation of the polymer mole- 
cules or the paracrystalline structure as to the rigid ellipsoid model in a 
three-dimensional space, (2) to obtain the approximate mathematical 
solutions, and (3) to discuss the scope of the applicability of the solut.ions. 

In  the following section, we use the term “segment” in the sense of the 
polymer segment or the crystallite of the paracrystalline structure. 

THEORY 

1. Rotation of Segments in a Flow of Velocity Gradient 

First of all, the molecular model should be described. The following 
assumptions are made. 

(1) A freely jointed cha,in model5 can be used as the model of both the 
polymer molecule and the paracrystalline s t ruc t~re .~ .~  In this model, 
rotational ellipsoidlike segments are freely joined as shown in Figure 1, 
and the effects of interactions through the both ends of the segment are 
negligible. 

8 
Fig. 1. Models assumed in the theory for (a) a molecule6 and (6) a paracrystalline 

structure. 

(2) At first, the segments are randomly oriented; then the segments are 
The orien- 

(3) The effects of the crystallization on the segment orientation are 
The assumption is correct whenever the crystallinity level 

forced to orient only through a deformation of the medium. 
tation of the segments relaxes only through a rotational diffusion. 

negligible. 
of the spun fiber is negligibly small. 
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For a molten polymer stream in the melt spinning process, we make the 
following assumptions. 

(4) The polymer stream is in the steady state. In  other words, the 
profile of the stream does not change with time. 

(5) The velocity profile can be expressed only as a function of the dis- 
tance from the spinneret orifice. 

In  the neighborhood of the orifice, the polymer velocity is also a function 
of the radial coordinate, in which case assumption (5) is not valid. How- 
ever, the above assumption is correct except very near the spinneret ori- 
fice. 

(6) The temperature of the molten polymer stream can be expressed 
only as a function of the distance from the spinneret orifice. In  other 
words, the rotational diffusion constant can be expressed only as a 

Polanyi’s 1 sphere 

s p i n n e r c t  I 
Spinnink f i b e r  Polyp.er segment o r  c r y s t a l l i t e  o r i f i c e  

Fig. 2. Orientation of a polymer segmeut or a crystallite according t o  an extension of a 
molten polymer stream. 

function of the distance, because the rotational diffusion constant is a 
function of the temperature. Actually, the temperature is also a func- 
tion of the radial coordinate. However, the assumption (7) is correct 
in the case where the molten polymer stream is extremely thin and the 
temperature difference between the polymer and the surrounding cooling 
gas is extremely small. 

We can discuss the orientation of the polymer segments or the crystal- 
lites through the above models and the assumptions. We consider the 
polymer molecule segment, which rotates in a flow where a velocity gra- 
dient exists in the x direction as shown in Figure 2. 

The following quantities are also defined: V = velocity of flow in the 
x direction at x = x (centimeters per second); G = velocity gradient 
of flow at x=x (per second); 4 = angle between the segment and the 
2 axis (radians) ; 4 = rate of rotation of the segment (radians per second) ; 
t = time (seconds); x = distance from the spinneret orifice (2 = 0, at 
t = 0) (centimeters). 
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The above quantities, G and 4 are expressed as: 

G = dV/dx 

4 = d$/dt 

The rate of the segment rotation is calculated 

4 = -G sin 4 cos 4 

2. Probability Distribution Function of Segment 

In this section, we derive the fundamental differential equation for the 
segment rotation; then we obtain the approximate solutions of the equa- 
tion. 

We define the following p(4,t) and D as: p(+,t) = probability distri- 
bution function attributed to the segment making an angle 4 with the 
x axis at  a time t; D = rotational diffusion constant of the segment (per 
second). 

It is clear in Figure 2 that a number dN of segments which lie in the 
angular interval [t$,$+dc$l is given as: 

dN = No p ( 4 , t )  sin 4 d+ (4) 

because the distribution function is of axial symmetry with respect to the 
x axis, where No is the total number of segments. 

We obtain the following equation from eq. (4). 

p(+,t) sin 4 d+ = 1 (5) 

The fundamental differential equation for the probability distribution 
function is then as follows. 

- ( P  sin 4) = - a .  
bt p 4  sin 4 - D sin 4 - 

Ziabicki' discussed the same problem using the following equation. 

b _ -  - - 2 ( p 4  - D$) 
dt a4 

However, the above equation should be used for the two-dimensional 
As our problem is three-dimensional character, eq. (6) should 

The general solution of eq. (6) may be impossible to obtain in practice. 

In order to obtain an approximate solution of eq. (6), we make the follow- 

(7') The duration of the fiber deformation is sufficiently short. 
(8) Both the velocity gradient G and the rotational diffusion constant D 

problem. 
be used. 

Therefore, we must be satisfied with an approximate solution. 

ing further assumptions for the polymer stream. 

are approximately constant as to the distance from the spinneret orifice. 
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When we express G and D as follows: 

G(t) = Go + Glt + Gzt2 + . . . 
D(t) = Do + Dit + . . . 

(7) 

(8) 

the probability distribution function p ( 4 , t )  should be expressed as follows: 

P(4,t) = PO + P l W t  + P2(4)t2 + P3(4)t3 +. . . (9) 

Taking the assumptions where, GO, GI, Gz, . . . , DO, DI,  . . .are constant. 
(7) and (8) into account, we assume that: 

1 >> Got >> Glt2 >> G?t3. . . 
1 >> Dot >> Dl t2 . .  . (10) 

From eqs. (5)-(9), we determine PO* PI(+), ~441, p3(4). 
Froin eq. (9); it is clear that: 

P(4,O) = PO 

Taking assumption (2) into account, po is a constant. I n  other words, a. 

1.20 
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1.16 
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9 
Fig. 3. Probability distribution function p ( 6 ,  t )  as a function of time t .  Calculation 

was made by eq. (14) assuming that Gb = 1 sec.-l; GI = GZ = . . . = 0; Do = 1 set.-'; 
D1 = Dz = . . . = 0; t = 0, 5 X 10-1; 10-'see. 

Tt 
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is independent of 4. Considering this fact we obtain po as follows, eq. (5) 
being used. 

Po = 1 (11) 

Substituting eqs. (9) and (11) into eq. (5), and considering that eq. (5) 

(12) 
Substituting eqs. (3), (7), (8), (9), and (11) into eq. (6), and considering 

should hold true at  any time, we obtain 

~o"'z~~(4) sin 4d4 = 0 i = 1,2,3,. . . 

that eq. (6) should hold true at any time, we obtain 

pi = Go(3 C0S2 4 - 1) 

2p2 = (Gopl + G1)(3 cos2 4 - 1) + Gomt sin 4 cos 4 + Doplt cot 4 + D0pltt 

3 ~ 3  = (GOPZ' + Gmt) sin 4 cos 4 + (GOPZ + GlPl + G2)(3 cos2 4 - 1) 
+(DOPZ~ + Dipit) cot 4 + D o P ~ ~ '  + Dipi" 

where, pif, pItt, p2', and pZft stand for dpl/d4, d2p1/drp2, dpz/d4, and d2pz/d$2, 
respectively. 

pi(4) = -Go + 3Go COS' 4 

From the above equations, we obtain 

1 + 3GoDO COS2 4 2G02 - - G 

15 
2 

) 
1 

( 2  
1 1 
2 2 

pZ(4) = - Go2 - - G1 + 3GoDo - 3 

+ - Go2 C O S ~  4 

1 1 1 
6 3 

p3(4)  = - - Go3 + 2 GoGl - - Gz - 5G02Do - 6GoDoz +2GoD1 + GlDo 

13 + (5 Go3 - 6GoG1+ Gz + 54G02Do + 18G0D02 - 6GoD1- 3QDo 

35 
2 

9 - 5 (2 Go3 - GoGl + 13Go2DO c0s4 4 + - Go3 cos6 4 (13) 

From eqs. (9), (ll), and (13), we obtain the approximate solution of the 
fundamental differential eq. (6) under the approximation of eq. (lo), as 
follows : 

15 1 1 1 
2 + - Go2cos4 4 1  t2 - [e Go3 - 2 GoGl + 5 G2 + 5G02Do + 6G&02 

- 2401 - GiDo - (" Go3 - 6GoGI + G2 + 54Go2D0 + 18GoDo2 2 
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- 35 Go3 cos6 4 t3 +. . . (14) 
2 1 

A numerical calculation was made for an example. The result is shown 
in Figure 3. 

3. Coefficient of Fiber Orientation 

We can calculate the coefficient of molecular orientation of spun fiber by 
using the probability distribution function p(4 , t ) .  The coefficient can be 
compared easily with an experimental result, e.g., birefringen~e.~" 

The following quantities are defined: f = coefficient of molecular orien- 
tation of spun fiber at a time t ;  nil = refractive index of a fiber in the direc- 
tion of the fiber axis at a time t; nl = refractive index of a fiber in the 
direction perpendicular to the fiber axis at a time t; qI = refractive index 
of single molecular segment or crystallite in the direction of the axis of 
segment or crystallite; ul = refractive index of single molecular segment 
or crystallite in the direction perpendicular to the axis of segment or crys- 
tallite; (nil -- nl)+ = constituent of an optical anisotropy of a fiber from 
the anisotropy (un - uI) of a single segment or crystallite inclined to the 
fiber axis at an angle 4. 

The constituent (nil - nl)+ is calculated as:gt.10 

(q - nl>+ = (q - .J[1 - (3/2) sin241 

rill - nl = so"/2 (rill - nl), &,t) sin 4&J 

(15) 

(16) 

The optical anisotropy (nil - nl) of a fiber can be calculated by eq. (16) : 

From eqs. (5) ,  (15), and (16), we obtain 

As the coefficient of molecular orientation of spun fiber is defined as :  

f = (rill - nl>/(ull - al) (18) 
we obtain the following expression from eqs. (17) and (18). 

Substituting eq. (14) into eq. (19), we obtain 

+. . . (20) 
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A numerical calculation was made for an example; the result is shown in 

Considering eq. (21) : 
Figure 4. 

(21) 
1 1 
2 3 

1' Gdt = Got + - Glt2 + - G2t3 +. . . 
we obtain eq. (22) from eq. (20). 

2 t  6 1 
21 f = 2 Gdt - 5 Go (Do - - Go) t2 

4 1 
5 2 1 '  7 7 -' (' Go3 + - Go2Do - 6G0D02 - - GoGl + 2G0D1 + GIDo 

The integral in eq. (22) can be expressed as: 

I ' G d f = [ : d x  = f - ( - ) d x  1 dV = 1 " d 1 n V  T d x  = In(V/Vo) 
o V dx 

where Vo is the initial velocity (at x = 0 or t = 0). 
Considering eq. (23), we obtain from eq. (22): 

( 2 : )  2 v  
5 vo 5 

f = -in(-) - - G ~  Do - - G ~  t 2  

2 2  4 1 
5 21 7 7 

- - (- Go3 + - Go2Do - 6G0Do2 - - GoGl + 2 G a 1  + GIDo) t3 + . (24) 

4. Solution Expressed by the Space Coordinate as a Variable 

Another approach can be considered in obtaining the solution of the 
In this section we use the distance from a spinneret 

Using the following relation as to the velocity V of a flow, we can change 

fundamental equation. 
orifice as the variable. 

the variable from t to x: 
V = dx/dt (25) 

If we take the above relation into account, the fundamental equation, 
eq. (6) ,  becomes: 

where, p(4,x) is the prolability distribution function at x = x. 
When we express V, G, and D as follows: 

V ( x )  = vo + v1x + P2xz + P3x3 +. . . 
G(x)  = Q + G ~ x  + G2x2 +. . . 

D ( s )  = Do + D1x +.. . 

(26) 
(7') 
(27) 
(8') 

= 71 + 2Ff l  + 3F3x2 +.. . 
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The above discussion indicates that the applicability of the approximate, 
theoretical results is extremely limited in the neighborhood of spinneret 
under practical melt spinning conditions. 

However, the theory should be useful in a case where the polymer tem- 
perature is near its melting temperature and the velocity gradient or the 
rate of extension is small. 
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Les solutions obtenues par approximation de l’bquation fondamentale tridimensionnelle 
concernant l’orientation moleculaire d’une fibre filee, ont 6te obtenues en supposant un 
modEle ellipsoidal rigide pour les segments molbculaires ou une structure paracristalline. 
On effectue une approximation de la vitesse d’extension G (sec-l) d’une fibre fondue e t  
de la constante de diffusion rotationnelle D (sec-l) du segment en fonction du temps t 
(sec), comme suit: 

G = Go + Git + Gztz + . . . 
D = D o = D i t +  . . .  

Dans les conditions ci-dessous: 1 >> Got >> GltZ >> G2t3 >> . . . and 1 >> Dot >> D1t2 >> 
. . . , on trouve un coefficient f d’orientation moleculaire de la fibre fondue Bgale 8:  

4 
5 21 7 

- ”( Go3 + - Go2Do - 6 GoDo2 - - GoGi + 2GoD1 + GiDo 
1 
7 

Le domaine d’application de l’approxirnation thBorique ci-dessous est extrhmement limit6 
ou voisinage de la filibre dans les conditions pratiques du filage h l’btat fondu. Cependant 
la thBorie aurait son utilite dans le cas oh la temperature du polyrnbre serait proche de sa 
temperature de fusion et oh la vitesse d’extension de la fibre filbe serait faible. 



1106 T. MANABE 

6. Velocity and Velocity Gradient of the Polymer Stream 
The coefficient of fiber orientation can be calculated from eqs. (20), (22), 

(24), (20'), and (24'), using G, V, and D. The quantities G and V have 
been measured by several The measurements of G and V,are 
relatively easy. When we define the following quantities: 

3.0 

2.5 

2.0 

1.5 

NO 
rl 
X 
+d 

1.0 

0.5 

0 
0 2 4 6 8 10 

t x  lo2 ( s e c )  

u = density of 

Fig. 4. Coefficient of molecular orientation f of spun fiber as a function of time t .  
Calculation was made by eq. (20) assuming that Go = 1 set.-'; GI = Gz = . . . = 0; 
DO = lsec.-'; D1 = . . . = 0. 

the fiber (grams per cubic centimeter), d = diameter of the fiber (centi- 
meters), Q = mass extruded from a spinneret orifice in unit time (grams 
per second). The velocity of a fiber is given by: 

V = 4Q/7rud2 (30) 

(31) 

and the velocity gradient is given by: 

G = - (8Q/?rud3) (dd/dz) 

We can calculate V and G from eqs. (30) and-(31), respectively, whenever 
the diameter d has been measured. 

7. Rotational Diffusion Constant of Segment 
The rotational diffusion constant D of rodlike segments is given as:13 

D = 8lCT/r~.4P (32) 
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where I = length of the rodlike segment (centimeters), 1 = microscopic, 
local, shear vi~cosity'~ of a medium for the segment, (grams per centimeter 
per second), T = absolute temperature, k = Boltzmann's constant (1.38 X 
10-l6 erg. deg.-l molecule-'). 

The rodlike segment can be regarded as a kind of a rotational ellipsoid. 
The microscopic, local viscosity is somewhat different generally from the 
usual, macroscopic vi~cosity.'~ However, these quantities may be of the 
same order of magnitude. 

From eq. (32), we know that the rotational diffusion constant D is a 
function of I, U, and T. As the viscosity is a function of both the molecular 
weight and the temperature of the medium (molten fiber), we can estimate 
the diffusion constant whenever we know an appropriate segment length, 
the molecular weight, and the temperature of the molten fiber. 

DISCUSSION 

In this section we compare the theory with results of an experiment 
published previously12 and discuss the scope of applicability of the theory. 

1. Velocity and Velocity Gradient Profiles 

Ziabicki's data12 for polycapronamide are used for the discussion. 
The spinning conditions (No. A8) were as follows: spinneret orifice diam- 
eter, 0.1 em.; denier of spun fiber, 40 den.; initial polymer temperature, 
275OC.; initial melt viscosity, 2000 g. em.-' see.-'; spinning speed, 
1093 em. see.-'; initial stream speed, 5.73 em. see.-'; distance where the 
stream speed saturates, 1400 em. 

As shown in Figure 5, the velocity gradient profile can be approximated 
as follows : 

G(x)  = 4.2 + 0.262 + 0.006x2 +. . ., 0 < x < 30(cm.) (33) 

Another approximation of the velocity gradient profile for a wider range 
of x may be possible as follows: 

G(x)  = 4.2 + 0.792 - 0 . 0 1 2 ~ ~  +.. ., 0 < x < 65 (em.) (34) 

However, the approximation expressed by eq. (34) should be inadequate 
for use in the approximate solution of eq. (6), because the approximate 
solution, eq. (20) or (20'), is valid only near the spinneret orifice where the 
conditions expressed by eq. (10) or (10') are realized. 

From the spinning conditions and by comparing eq. (27) with eq. (33), 
we obtain the following values for the spinning. 

Po = 5.73 em. see.-' 

PI = 4.2 see.-' 

P2 = 0.13 em.-' see.-* 

7: = 0.002 cm.-2 see.-' 
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20 

sp inn ing  way ; x (cm) 

Fig. 5. Velocity gradient G as a function of the distance 5 from spinneret orifice, 
and its approximations:12 eq. (33), adequate approximation; eq. (34), inadequak 
approximation. 

The initial velocity Vo was calculated from the orifice diameter, spinning 
speed, spun fiber denier, and the density of the melt polymer (1.08 g. 
disregarding the stream broadening's in the neighborhood of the orifice. 
Then the true value of Vo is less than 5.73 cm. see.-' 

2. Scope of Applicability of Approximate Solution Taking into Account 
the Velocity Profile 

By substituting the values of Vo, Vl, V2, and V3 into eq. (lo'), we can 
determine the region where the approximate solution, eqs. (20') or (243, 
is valid. 

0 < x < 0.2 cm. 

We know that the approximate solution has poor applicability in practical 
melt spinning conditions. 

We obtain the region as follows: 
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3. Scope of Applicability of Approximate Solution Taking into Account the 
Rotational Diffusion Constant 

We can estimate the dimensions of structural units by means of x-ray 
diffraction: The large-angle scattering suggests a unit cell with a = 9.45 A., 
b = 8.02 A., and c = 17.08 A.16 in nylon 6 [--NH(CH,)&O-]],, where the 
dimension c = 17.08 A, corresponds to two monomer units along the fiber 
axis. 

On the other hand, another dimension of 73-76 A. is suggested by the 
small-angle scattering in nylon 6.17 We could use these dimensions in the 
estimation of the rotational diffusion constant. We obtain the following 
values from eq. (32). 

Case 1 : 

T = 548'K. 

p = 2000 g. cm.-' sec.-* 

I = 1.7 X cm. 

D = 1.96 X lo4 set.-' 

Case 2: 

T = 473'K. 

p = lo5 g. crn.-l sec.-' 

I = 7.5 X 10-7cm. 

D = 3.94 set.-' 

Case 1 may represent a polymer stream in the neighborhood of the spin- 
neret orifice in a melt spinning of nylon 6, because the temperature is con- 
siderably higher than the melting temperature and the melt viscosity is 
suitable for a practical melt spinning and the dimension of the structural 
unit (polymer segment) is small. 

Case 2 may be considered to correspond to a polymer stream which is a 
considerable distance from the spinneret orifice in spinning of nylon 6, be- 
cause the temperature is lower than the melting temperature and the vis- 
cosity is considerably high and the larger structure (crystallite) has been 
produced. 

By substituting the values of Vo and Do into eq. (lo'), we can ascertain 
the region where the approximate solution, eqs. (20') or (24'), is valid. We 
obtain the region as follows: 

For case 1 : 

O < z < 6 X  10-6cm. 

For case 2 : 

0 < x < 0.3 cm. 
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The above discussion indicates that the applicability of the approximate, 
theoretical results is extremely limited in the neighborhood of spinneret 
under practical melt spinning conditions. 

However, the theory should be useful in a case where the polymer tem- 
perature is near its melting temperature and the velocity gradient or the 
rate of extension is small. 
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Les solutions obtenues par approximation de l’bquation fondamentale tridimensionnelle 
concernant l’orientation moleculaire d’une fibre filee, ont 6te obtenues en supposant un 
modEle ellipsoidal rigide pour les segments molbculaires ou une structure paracristalline. 
On effectue une approximation de la vitesse d’extension G (sec-l) d’une fibre fondue e t  
de la constante de diffusion rotationnelle D (sec-l) du segment en fonction du temps t 
(sec), comme suit: 

G = Go + Git + Gztz + . . . 
D = D o = D i t +  . . .  

Dans les conditions ci-dessous: 1 >> Got >> GltZ >> G2t3 >> . . . and 1 >> Dot >> D1t2 >> 
. . . , on trouve un coefficient f d’orientation moleculaire de la fibre fondue Bgale 8:  

4 
5 21 7 

- ”( Go3 + - Go2Do - 6 GoDo2 - - GoGi + 2GoD1 + GiDo 
1 
7 

Le domaine d’application de l’approxirnation thBorique ci-dessous est extrhmement limit6 
ou voisinage de la filibre dans les conditions pratiques du filage h l’btat fondu. Cependant 
la thBorie aurait son utilite dans le cas oh la temperature du polyrnbre serait proche de sa 
temperature de fusion et oh la vitesse d’extension de la fibre filbe serait faible. 
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Zusammenfassung 
Unter der Annahme eines starren Ellipsoides als Model1 fur die Molekulsegmente oder 

die parakristalline Struktur wurden Naherungslosungen der dreidimensionalen Funda- 
mentalgleichung fur die molekulare Onentierung einer gesponnenen Faser erhalten. 
Die Dehnungsgeschwindigkeit G (sec-l) einer geschmolzenen Faser und die Rotations- 
Diffusions-konstante D (sec-1) des Segmentes werden durch folgende Naherungsgleich- 
ungen als Funktionen der Zeit t (sec) wiedergegeben: 

G = Go + Git + Gzt' + . . . 
D = Do + Dit + .. .  

Unter Beachtung der Bedingungen 1 >> Got >> Glt' >> G2t3 >> . . . und 1 >> Dot >> DltZ >> 
. . . findet man fur den Koeffizienten der Molekulorientierung f der gesponnenen Faser: 

f = L G d t  - :Go( Do - Go)' 

OGi + 2GoD1 + GiDo 
2 2  4 1 - -(- G03 + - Go'Do - 6GoDo' - 7 G 5 21 7 

Unter den technischen Schmelzspinnbedingungen ist die Anwendbarkeit dieser aus der 
Theorie hergeleiteten Niiherungslosung in der Nahe der Spinnduse sehr beschrankt. 
Die Theorie sollte aber fur den Fall brauchbar sein, dass die Temperatur des Polymeren 
in der Nahe seines Schmelzpunktes liegt und die Dehnungsgeschwindigkeit beim Spin- 
nen der Faser niedrig ist. 
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